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1 Introduction

The processing of information by means of a coherent optical system has been
a proposition for over 50 years. Such systems offer extreme processing speeds
for Fourier-transform operations at power levels vastly below those achievable in
conventional silicon electronics. Due to constraints such as their physical size and
the limitations of optical-electronic interfaces, the use of such systems has so far
largely been restricted to niche military and academic interests. Optalysys Ltd has
developed a patented chip-scale Fourier-optical system in which the encoding
and recovery of digital information is performed in silicon photonics while retaining
the powerful free-space optical Fourier transform operation. This allows previously
unseen levels of optical processing capabilities to be coupled to host electronics
in a form factor suitable for integration into desktop and networking solutions while
opening the door for ultra-efficient processing in edge devices. This development
comes at a critical time when conventional silicon-based processors are reaching
the limits of their capability, heralding the well-publicised end of Moore’s law. In
this white paper, we outline the motivations that underpin the optical approach,
describe the principles of operation for a micro-scale optical Fourier transform
device, present results from our prototype system, and consider some of the
possible applications.

2 Why Optics?

Optical processing is arguably one of the most competitive systems for non-
electronic computation. Fourier optics exploits the property that the electromag-
netic optical field projected onto the down-beam focal plane of a standard optical
lens contains the 2-dimensional continuous Fourier transform F(x, y) of the field
E(x, y) present at the up-beam focal plane.

Figure 1: The 4f optical correlator. A propagating laser beam is modulated by data a,
Fourier-transformed by a lens, and then optically multiplied by further modulation with
B, which corresponds to the Fourier transform of some original data b. The light then
passes through a second lens which performs the inverse Fourier transform and projects
the convolution a⊛ b onto a plane c, where it is detected by a camera or photodiode array
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The canonical example of such a system is shown in Figure 1 in the form of the
optical correlator, an optical information processing system dating back to the
1960s which has seen wide use in pattern-matching applications. At the core of
optical correlation is the convolution equation, which states that the convolution of
two functions is equivalent to the inverse Fourier transform of the element-wise
multiplication of the Fourier transform of each function:

a⊛ b = F−1
(

F(a) · F(b)
)

(1)

where:
a is the input image
b is the filter kernel
F is the forward Fourier transform
F−1 is the inverse Fourier transform

The development of artificial intelligence and deep learning has in recent years
provided a wealth of novel data processing techniques. Of immediate interest
from an optical processing perspective is the Convolutional Neural Network or
CNN. In a CNN, data corresponding to a digital image I(x, y) (or indeed a general
2-dimensional data-set) is convolved with multiple kernel functions Ki(x, y) which
extract image features into a series of maps. In machine vision for image categori-
sation, the combination of these feature maps1 is then used by a fully connected
network to classify the subject(s) of an image. While this is a computationally
expensive operation when evaluated directly in the spatial domain (of order O(nm)
where n and m are the respective dimensions of I and K), this operation can be
expressed as a simple element-wise matrix multiplication (O(max(n,m)) in the
Fourier domain by way of Equation 1. Furthermore, both the Fourier transform
and the element-wise multiplication may be carried out in parallel by an optical
system such that an individual convolution operation can be performed in O(1)
time regardless of the image/kernel dimensions, up to the maximum resolution of
the system.

However, a Fourier-optical system is not limited to CNN techniques and an ultra-
fast Fourier transform has many generalised applications in information processing.
One of the more pertinent applications, that of novel cryptographic systems, is
explored in Section 5.1.

1Generally after several rounds of pooling and cross-channel summation to reduce the amount
of output data
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Figure 2: The Optalysys FT:X 2000, a proof-of-concept high-resolution low-speed Fourier-
optical computing system

The optical approach offers two primary advantages over conventional electronics:

• High bandwidth; Optical systems operate by directly modulating an ex-
tremely high-frequency carrier; for communications-band 1550 nm light,
the associated baseband frequency is nearly 200 THz. An optical system
can achieve very high calculation throughput by making use of existing
high-speed input devices, modulators and sensors.

• High connectivity; While propagating through free space, an optical calcu-
lation is inherently highly connected and massively parallel. In the potential
for all-to-all mapping from a large number of input nodes to a large number
of output nodes, this technique is unmatched in conventional integrated
microelectronic methods.

This massively parallel calculation in the optical domain is the basis of all Op-
talysys technology, including our previous FT:X series of Peripheral Component
Interconnect Express (PCIE) interfaced optical systems as shown in Figure 2.
However, these devices feature large resolutions (> 2 million pixels) and slow
operating speeds in the kHz range. This very high resolution and low speed
is not suited to CNN applications that require many convolution operations be
performed in a short period of time, but use kernels that generally do not exceed
5× 5 elements in resolution. The move to a silicon-photonic (SiP) system imposes
a practical limit to system resolution (albeit a resolution that exceeds the size of a
typical kernel) while offering the potential for operation at multi-GHz speeds in a
smaller form factor that better meets the needs of today’s AI applications. The SiP
section of our system is shown in Figure 3.
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Figure 3: The emissive grating coupler and input waveguides of the Optalysys MFT-SiP
prototype, a low-resolution high-speed Fourier-optical computing system.

The micro-scale system developed by Optalysys consists of two basic elements.
The first is a SiP multiplication stage for optically encoding and multiplying two
complex numbers through the use of two sequential arrays of Mach-Zehnder Inter-
ferometers (MZIs). The second is a single 2f Fourier transform stage performed in
optical free space. Together, they form the Multiply-and-Fourier Transform (MFT)
unit, shown schematically in Figure 4.

Figure 4: A schematic view of our Multiply-and-Fourier Transform optical system, incorpo-
rating two MZI stages and a free-space Fourier optics stage. An initial beam of coherent
light is split into individual SiP waveguides which each feed two sequential MZIs used to
encode data into each beam. These individual beams are then recombined in free space
and allowed to diffract before passing through a convex lens, which focuses the beam
and projects the Fourier transform of the data onto a detection plane.
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3 The MFT Unit

3.1 The Multiplication Stage

In the multiplication stage, a beam of 1550 nm infra-red laser light is supplied by
an integrated solid state laser. This initial beam is first divided by a branching
tree multiplexer and then coupled into waveguides etched in a silicon die. Each
waveguide individually feeds two sequential SiP MZIs which are used to alter the
phase and amplitude of each beam to encode a complex value. This is shown
schematically for a single waveguide and MZI pair in Figure 5.

Figure 5: Schematic diagram of two sequential MZIs fed by a waveguide connected to
an optical source. The numbers ϕ1 and ϕ2 are the beam phases accumulated by the field
when passing through the upper and lower arms of the first MZI. The phases ψ1 and ψ2

are those accumulated in the upper and lower arms of the second MZI.

Modulation of a beam by an MZI is accomplished by modifying the local speed
of light along each arm of the MZI by adjusting the refractive index of the silicon.
Assuming a consistent refractive index n along each arm of length l, the associated
change in phase is given by Equation 2.

ϕ = 2π
l

λ
n, (2)

where:
ϕ is the accumulated phase
l is the length of waveguide
n is the refractive index of the propagating mode
λ is the wavelength of the electro-magnetic field in vacuum

In our prototype device, n is adjusted by altering the local temperature along each
arm with an array of micro heaters. The field amplitude after multiplication by the
complex value in a given MZI is
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3.2 The Fourier transform stage

Figure 6: An unmodulated beam of laser light (denoted here by unity) enters the MZI
array. The encoding of beam with a complex value into the optical field occurs at MZI 1.
This encoded beam then propagates into MZI 2, where it can be multiplied by a second
complex value.

A =
eiϕ1 + eiϕ2

2
. (3)

where:
A is the amplitude of the field after operations in an MZI
ϕ1 is the phase accumulated in the upper arm
ϕ2 is the phase accumulated in the lower arm

The use of two MZI arrays in the multiplication stage is intended to allow the
system to emulate the function of a 4f correlator despite the absence of a second
free-space stage. In this application model, data corresponding to the FT of an
image or other data-set is encoded into the beams by the first MZI stage. The
second MZI stage can then be used to perform the element-wise multiplication of
these values by the FT of a kernel. The output of the free-space stage acting on
the multiplied values will then correspond to the inverse Fourier transform of the
Fourier domain multiplication of data and kernel, as shown in Equation 1.

In the above, we assume that the laser input starts as a coherent, monochrome
beam containing no encoded data. If the input has already been processed by
another optical source, one or more MZIs may not be required, depending on
application. The multiplication unit will still act on the input, but both MZI arrays
can be set to multiply by 1. This property allows the device to be integrated into a
system of other optical components without interfering with previously processed
data.

3.2 The Fourier transform stage

Following the multiplication stage, light is emitted into free space through a 2-
dimensional grating coupler (GC) array, and then relayed through a lens onto a
second GC array which images the Fourier plane. Since GC arrays typically have
a very low fill factor and produce a divergent beam from each “pixel”, a micro-lens
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3.3 Detection of the optical Fourier transform

array (MLA) is used to create a collimated input plane with a high effective fill
factor. Similarly, the second GC plane accepts a convergent beam, and so a
second MLA is used to focus the Fourier plane resolution elements down onto the
corresponding GCs. The arrangement of grating couplers, micro-lens arrays and
the optical field are shown in Figure 7.

Figure 7: Illustrative sketch of a single 2f free-space optical stage. On-chip SiP compo-
nents are coloured grey, free-space optics are coloured blue, and the zeroth-order optical
beam is coloured red. d refers to the spacing between GC elements and f is the focal
length. Higher-order diffracted light is shown in fainter red and extends beyond the image
to the top and bottom; this light is not transmitted through the system when the MLA is in
place.

3.3 Detection of the optical Fourier transform

The 2-dimensional Fourier transform performed by an optical system is spatially
continuous, in that the electric field E(u, v) at the front surface of MLA2 is defined
for all spatial frequencies (u, v) by the electric field E(x, y) at the back (down-
beam) surface of MLA1, both of which sit at a focal distance f from the FT lens.
The relationship between the spatial frequency and distribution of the electric field
is given in Equation 4
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3.3 Detection of the optical Fourier transform

E(u, v) =
1

λf

∫∫

∞

−∞

E(x, y)e
2iπ
λf

(ux+vy)dx dy (4)

where:
λ is the wavelength of the light
f is the focal length of the lens
u, v are the spatial frequencies of the field
x, y are coordinates along the back plane of MLA1

In a digital system, we want to accurately perform the Discrete Fourier Transform
(DFT), which for an input I[m,n] of array dimensions (M,N) can be written as

F{I[m,n]}[p, q] =
M
∑

m=0

N
∑

n=0

I[m,n]e2iπ(
mp

M
+nq

N
) (5)

where:
[m,n] are the integer indices for individual pixels for the input array
[p, q] are the integer indices for individual pixels for the output array

Since the grating couplers are spatially discrete, the electric field is in reality
same-valued over local regions and is not continuous. For an idealised system
with pixel pitch d and 100% fill factor, the input electric field is effectively the
convolution of a discrete input function with a 2D rectangular aperture of size d.
Hence, the output field of an optical Fourier transform contains a finite sum of
plane waves given by the the discrete sampling points, which are directly related
to the DFT of equation 5

E(u, v) =
(

M
∑

m=0

N
∑

n=0

I[m,n]e2iπ(m
ud
λf

+n vd
λf

)
)

· sinc
(ud

λf
,
vd

λf

)

(6)

The output field itself represents the squared absolute value of a Fourier transform.
The full Fourier transform (including both real and complex parts) can be recovered
in a single optical frame through the use of a balanced photodiode array.

There are several factors that affect the precision of the detected Fourier transform.
The first is the splitting of the laser power by a branching tree; for an N ×N grid
of grating couplers, the laser power required to provide each GC with light at
a constant intensity scales as N2. The second is that silicon absorbs photons
through interactions with charge carriers. The laser power required to provide a
stronger signal for detection does not scale linearly, which imposes a practical
detection limit of 4 bits.

The use of an optical Fourier transform means that the output is not of the same
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scale as an integer implementation in electronics. The solution is to consider
all optical outputs as relative to themselves; the outputs are then normalised by
making the highest value in the output equal to the highest value in the bit range,
and applying a linear scaling over the remaining values.

Despite the limitations described above, it is possible to calculate a given optical
Fourier transform to an arbitrary degree of precision via bit-shifting. While allowing
for higher numerical accuracy, this approach requires the use of multiple FT
frames to build the result to the desired accuracy.

4 Demonstrator device

Optalysys have produced a proof-of-concept prototype system incorporating the
above technologies and considerations. This system has a GC resolution of 5× 5
and the refractive index of the individual MZIs is modulated by thermal means.
This limits the practical speed of the system as the use of these modulators
introduces thermal cross talk, and heater values must be changed comparatively
slowly (on the order of microseconds).

Figure 8: The silicon-photonic prototype, the precursor to a fully bonded unit, as mounted
in the demonstrator system. The fibre-optic input for the laser and the coupling optics can
be seen on the right. The edge of the prism unit is positioned directly over the emitting
GC array.

The prototype system is mounted on a custom-manufactured board of drive
electronics that manages received data from a host computer, which is encoded
into the system via control of the thermal modulators. 1550 nm C-band laser
light is provided by a GoLight tunable light source coupled into a branching tree
multiplexer by a fibre-optic connection. The free-space stage of the optics is a
combined prism-lens unit which is mounted directly above the grating coupler
array. The mounting of the system to the drive electronics, the fibre-optic coupling
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4.1 Results

and the edge of the prism in position above the emissive grating coupler array can
be seen in Figure 8. To facilitate the current calibrations being performed on the
device, no MLA is present at either the emissive or receiving plane, thus higher
order light is transmitted alongside the dominant Fourier plane elements. The
effects of this additional light are visible in the results presented in the following
Section.

4.1 Results

The following results show the input pattern to the device, the anticipated in-
tensity readout as calculated digitally, and the directly observed output plane.
These results are provisional for a device currently undergoing calibration and
characterisation. To make the calibration easier, we restricted ourselves to three
possible values for each input pixel: −1, 0, or +1. We are currently in the process
of performing a finer calibration which will allow for a broad range of real and
complex values. Pixel positions are indicated by the label on the axes.

For Figures 9-13, we provide a root mean squared (RMS) error as calculated
through the following method. We first normalize the output image so that its
values lie between 0 and 1. We then compute the square of the difference with
the squared absolute value of the Fourier transform of the input image, average
the result over the 25 pixels, and take the square root. This result provides an
estimate of the error on each pixel. As can be seen below, this error is smaller
than 0.20, and smaller than 0.15 for most of the figures. We expect that a more
precise calibration will bring the errors down to less than 0.1 and allow the output
to be measured with at least 2 bits of accuracy.
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Figure 9: A black (inverse) diagonal. Input values are −1 (black), 0 (grey), and 1 (white).
The total RMS error is 0.14.

10
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Figure 10: A small offset bar. Input values are 0 (black) and 1 (white). The total RMS
error is 0.12.
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Figure 11: A diagonal pattern. Input values are 0 (black) and 1 (white). The total RMS
error is 0.17.
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Figure 12: A T-shape. Input values are 0 (black) and 1 (white). The total RMS error is
0.13.
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Figure 13: A set of vertical and horizontal line patterns. Input values are −1 (black), 0
(gray), and 1 (white). The total RMS error is 0.14.

The optical device can also be used to compute the full complex Fourier transform
of an input by comparing the measured intensities of the output with that of
a reference. In the future, this comparison will be performed using balanced
photodiodes, allowing to measure both the amplitude and phase in one frame.
As a preliminary step, we developed a method to compute the complex Fourier
transform from images of the output plane for different outputs.
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Figure 14: Fourier transform for an input with one bright pixel at position (2,1).

Figures 14 and 15 show results for the Fourier transform for two inputs having
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4.2 Route to the future

one pixel in its “on” state each. In each figure, the left panels show the real and
imaginary parts of the Fourier transform as obtained using the optical device, and
the right panels show the exact discrete Fourier transform of the input. A precise
estimate on the complex Fourier transform will require a more precise calibration,
which is in progress. However, as illustrated on these two images, preliminary
results indicate good accuracy. (At the moment, the RMS error is close to 20%.)
As for the squared absolute value, we expect to reach at least two bits of accuracy.
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Figure 15: Fourier transform for an input with one bright pixel at position (2,3).

4.2 Route to the future

4.2.1 PN Junction Mach Zehnder Interferometers

By far the most significant increase in system operating speeds is offered by
adopting an alternative modulation method to the thermal modulators currently
used on the demonstrator device. SiP MZIs are also available in the form of the
PN-junction MZI, which manipulates the charge carrier density in doped silicon
via broadening of the junction depletion layer to dynamically alter the refractive
index. Such MZI arrays can be driven at very high speed (up to 50 Gbits/s per
MZI) with 4-level Pulse Amplitude Modulation (PAM4).

4.2.2 Systems Integration

The extreme operating speed and throughput of an optical system requires addi-
tional consideration as to the manner in which it is integrated into an electronic
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host. An example is an optical device operating at 9× 9 resolution at 10 GHz with
a detection depth of 2 bits, which has a maximum throughput for FT calculation
of 1.62 TBits/s. Higher operating speeds, resolutions and bit-depth are entirely
plausible with current technology. Depending on these factors and the device-level
integration of the optical system, this throughput may exceed the rate at which data
may be transferred over conventional electronic interconnect standards. If used
as a desktop co-processor through the same Peripheral Component Interconnect
Express (PCI-e) framework as a Graphics Processor Unit (GPU), such a device
would effectively reach the Von Neumann bottleneck even for next-generation data
transfer standards such as PCI-e v6.0, which supports 128 GB/s (1.024 TBits/s)
per direction with a 16-lane configuration. As a component in a stand-alone unit
such as a PC motherboard or server rack, achieving peak performance for an MFT
unit will likely require the development of a dedicated high-throughput connection
positioned near to key processing units and memory.

To take full advantage of the high-speed operation capabilities of the MFT unit in
the near future, we therefore suggest integration into existing optical applications.
The native use of 1550 nm light in both the MFT unit and the high-bandwidth
optical transceivers currently used in data-centres makes the embedding of the
MFT unit in these inherently optical systems a natural proposition. The versatility
of the Fourier transform and the very high data throughput the device can manage
provides significant scope for the transformation of data in-flight. This would allow
a range of applications to work at speeds that vastly exceed their current digital
implementation. In this use-model, we envisage a world in which data transmitted
to the cloud for processing in a neural network arrives on the server having already
been converted into a more efficient representation in the Fourier domain as it
passes through the network connection, without incurring the time and energy
intensive use of the digital Fast Fourier Transform. Alternatively, as the need for
quantum-secure communications in the near future becomes more pressing, an
MFT unit embedded into an optical transceiver could support the rapid execution
of operations that support next-generation lattice-based cryptography. We provide
more detail on this application in the following Section.

5 Applications

The 2-dimensional Fourier transform lies at the core of the Optalysys device. While
designed to support additional AI-specific operations, the potential of the system
as a means of performing an ultra-fast discrete Fourier transform is marked. While
many applications benefit from faster computation of the Fourier transform, we
consider the subject of cryptography a prime example due to the time-critical
nature of encrypting and decrypting information in a modern communications
infrastructure.
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5.1 Cryptography

5.1 Cryptography

Cryptography secures the digital world around us by obscuring the information
contained in data to all but the legitimate parties who are given access to it. The
fundamental concept that lies behind all cryptography is the notion that there
are certain mathematical functions which are easy to perform but very hard to
reverse. In many current cryptographic systems that secure the exchange of data
between two digital systems (such as public-key cryptography), the “easy” step is
multiplying together two large prime numbers, while the “hard” step is finding both
of the primes which were multiplied together to return a very large number. While
these systems are secure at the moment, technological advances in quantum
computing pose a threat to this paradigm. For example, Schorr’s algorithm is a
technique that can only be executed on a quantum computer, but offers a way
of finding large prime factors in a time-scale that makes attacking prime-based
cryptography plausible.

Awareness of this potential threat has in recent years spurred a sustained search
for cryptographic techniques that do not share this vulnerability. While a number
of alternatives have been proposed, one of the most promising is Lattice-based
cryptography (LBC). The security of LBC is not based on the difficulty of factoring
large primes but on the difficulty of solving problems on lattices, specifically what
is known as the “shortest vector” problem. In mathematics, a lattice refers to
a grid of discrete points where the entire grid can be constructed using simple
instructions applied to a given set of vectors known as a basis. Crucially, any
lattice can be constructed using many different basis sets; the shortest vector
problem requires an attacker to find the shortest vector in the lattice given a basis
of much larger vectors. While conceptually simple, the shortest vector problem is
categorised as NP-hard, meaning that there is no known algorithm for its solution
in either classical or quantum computing.

Besides demonstrating mathematical security, a useful cryptographic system for
the digital age must also be able to encrypt and decrypt data at very high speed.
LBC is heavily reliant upon the Fourier transform, which is used to efficiently
perform point-wise polynomial operations on the lattice, and thus makes extensive
use of computational techniques such as the Cooley-Tukey Fast-Fourier Transform
(FFT). Indeed, much effort [1,2] has been made on the behalf of LBC to implement
more efficient FFT techniques for both the underlying arithmetic and the practical
implementation on hardware in an attempt to overcome the O(n log n) scaling of
the Cooley-Tukey scheme. Given the inherent O(1) calculation time of a single
discrete Fourier transform in an optical system and the very high speeds a silicon-
photonic system may achieve, our device has the capacity to vastly accelerate the
practical implementation of lattice-based methods such as the SWIFFT hashing
function or NTRU key exchange.

A very recent development of further interest is lattice methods for performing what

15



5.2 Deep Learning

is known as Fully Homomorphic Encryption, or FHE. An FHE scheme can encrypt
data in such a way that the underlying relationships in a data-set are preserved,
allowing addition and multiplication operations to be performed even on encrypted
data. This has long been considered a significant goal in cloud computing as FHE
allows for sensitive data (such as financial or medical information) to be encrypted,
sent to the cloud for analysis by a machine learning network, and then returned to
the originator without ever leaving a strongly encrypted state. IBM has released
an FHE developer toolkit that includes a demonstration of a machine learning
network performing inference on an encrypted data-set to demonstrate that this
practical aspect of FHE is no longer hypothetical. From both a security and legal
perspective, FHE bypasses many of the issues that prevent cloud computing from
reaching its full potential, and is set to revolutionise the field.

However, while mathematical operations can be performed on FHE-encrypted
data, it is also known to be exceptionally slow and computationally demanding to
do so. As with other lattice methods, FHE makes extensive use of the FFT function
to the degree that at least one FHE method (Fully Homomorphic Encryption over
the Torus, or TFHE) requires a dedicated Fourier processor [2] to run on a practical
time-scale. Our system therefore offers the possibility for the dramatic yet efficient
acceleration of this groundbreaking technology with the corresponding benefits to
both industry and society at large.

5.2 Deep Learning

Deep learning commonly makes use of high-level frameworks to streamline the
construction of network architectures and efficiently execute computations. Our
system is designed for integration into common deep learning languages and
systemisations such as TensorFlow, Keras and PyTorch via API calls. The pro-
totype device currently supports the input of array data (Python numpy format)
into the system via a single Python import: SiliconPhotonicsDevice and optical
Fourier transform function: oft(), with all management of the encoding and optical
systems handled by the supporting electronics for the device.

5.2.1 Projected performance in the AlphaFold Protein-prediction CNN

To provide an estimate of the speed of the optical system in deep learning tasks,
we consider the protein structure prediction tool AlphaFold [3,4]. Developed by
Alphabet’s Deepmind group and best-in-class at the 13th Critical Assessment
of protein Structure Prediction (CASP 13), AlphaFold uses an extremely deep
ResNet Artificial Neural Network architecture to predict the folded structure of
proteins. The network is trained on a massive data-set of other proteins sourced
from the Protein Data Bank (PDB) and learns features from the the 1-dimensional
chain that correspond to the folded 3-dimensional structure. In creating the input
data for the prediction of a given protein structure, AlphaFold assembles a 128
channel block of 2-dimensional inputs by applying a range of existing bio-structural
data analysis techniques to the 1-dimensional amino-acid sequence of the given
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5.2 Deep Learning

protein.

To predict the contact map or “distogram” (the 2-dimensional map that describes
the 3-dimensional distances between individual elements of the protein chain),
AlphaFold applies 4 slightly different network configurations or "replicas" to the
data. To reduce memory usage, each input channel is repeatedly divided into
non-overlapping 64x64 crops. An inference pass on a 2-dimensional 64x64 crop
of a single channel is performed by a ResNet architecture that consists of 220
individual residual blocks in which the crop is repeatedly convolved with a 3x3
kernel with varying pixel dilation (alongside an Exponential Linear Unit (ELU)
activation function and Batch Normalisation per block) and sees the performance
of approximately 13,629,440 individual 3x3 convolution operations.

The convolution operations are performed on single-precision 32-bit floats. Using
the equivalent of 8 cores (with hyperthreading) on an Intel i7-8700k operating at
3.7 GHz which consumes 86.2 watts of power when under full load, a single pass
of a 64x64 crop through the ResNet architecture is performed in an average of
0.71 seconds as determined by inserting time reports into the relevant sections
of the CASP-13 version of the AlphaFold source code. It is assumed that the
convolutions, as the most computationally expensive operations, account for the
bulk of the computational time.

An initial conservative estimate for an optical system is that of a unit with 5x5
resolution operating at 500 MHz with 4-bit precision and consuming 20 watts of
power for the optical components. Of course, additional power is required for
the surrounding drive electronics that manage the loading, saving and transfer
of data; these are specific to the implementation of the device in a system, and
so no estimate of their power consumption is given here. It is assumed that the
Fourier transform of the pre-trained filters is already known and that no calculation
overhead is required for this process at runtime. As both real and imaginary
components are recovered simultaneously in an optical system, 8 frames in total
(including both forward and inverse Fourier Transforms) are required to match the
equivalent accuracy of two 32-bit NVIDIA CUFFT Fourier Transform operations,
in which the real and imaginary components are separately represented by 16
bit values. Only 4,759,040 5x5 convolutions are required to match the equivalent
number of 3x3 convolutions2. Under these values, the total processing time for
the network acting on a 64x64 crop is 0.076s.

This would represent an improvement in power efficiency by a factor of 40, and an
improvement in processing speed by a factor of 9.32, in comparison to an Intel
i7-8700k applied to the same task.

2Convolution with a 3x3 kernel may be performed for higher input data resolution by using a
higher-resolution Fourier transform of the 3x3 kernel
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While AlphaFold uses 32 bit floats, recent research [5, 6] has demonstrated
that deep learning networks for tasks such as image classification and speech
recognition can be trained on 16-bit hardware and can successfully perform
inference using inputs of just 2-4 bits. Under such a low-precision paradigm, the
form factor and power efficiency of our device makes it a natural contender for
performing extremely high-speed image recognition in mobile applications such
as hand-held electronics, edge IoT devices, and self-driving automotive solutions.

6 Conclusion

Optalysys have developed a novel micro-scale optical processor for optically
performing calculations based upon 2-dimensional Fourier transform operations.
We have demonstrated how the combination of silicon-photonics and classical free-
space optics can provide unique and potent benefits for performing calculations
at the very physical limits of speed and efficiency. The vast gains in performance
made possible by this technology will not only accelerate existing applications, but
spur the development of new approaches and methodologies for data processing
that can best utilise the staggering gains in computational power that have been
unlocked by our work.
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