
Encrypted search using fully homomorphic

encryption

[16 minute read]

Information is the lifeblood of the modern internet. As of January 2021, 4.66 billion people were active internet users, each one

sending and receiving a torrent of data.

Quite of lot of this data is (relatively speaking) harmless and can be shared and accessed to various degrees. A vast and lucrative

market around analysing this data has sprung up, taking advantage of this highly accessible information, with associated concerns

about how this data is used.

However, what about information that is both valuable and sensitive? Too sensitive to run the risk that an unauthorised party could

even see it, let alone work with it?

The problem of privacy

There are plenty of cases like this, and the standards for how this data can be used and shared are exceptionally high. This can be a

pretty significant barrier to getting the full value out of that information. Consider the following example:

A man walks into a bank and wishes to open an account. The bank is legally obliged to ensure that the money entering that account

isn’t from the proceeds of crime, so the first thing they must do is establish who this man is and where the funds have come from. This

process is known as KYC or Know-Your-Customer, a key part of Anti-Money Laundering (AML) compliance.

Sounds simple right? Companies: banks and other financial institutions; keep computerised records, so surely verification is simply a

matter of searching the relevant databases?

In fact, such checks are a headache for all involved because of the need to preserve privacy. For example, in the EU, GDPR legislation

imposes tight restrictions on how personal data can be used and shared. And that is entirely understandable, because the damage that

can be done with the important information is enormous.

And all of this is down to a problem with encryption.

A new approach to security

Information can be stored in encrypted form when travelling or at rest, but under current encryption methods, the data must be

decrypted when it is being processed. That means that if you want to search a central repository of information, the information has

to (at some point) be decrypted.

Securing a large-scale repository of unencrypted information against intrusion is already extremely hard; being able to safely grant

access to external parties is even harder, so information sharing between companies and other record-holders is generally a slow

process.

The solution to this (and many other problems) is Fully Homomorphic Encryption, a new model of cryptography that allows

computation on encrypted data. Under FHE, an encrypted database can be searched for information without the need to decrypt the

information at any point. At a stroke, a major barrier to safe information management can be eliminated, although not without a

cost; the computational nature of FHE makes it notoriously slow, even on modern computing systems.

However, FHE is only slower than unencrypted processing from a computational standpoint. When compared against the lengthy (and

not to mention still fundamentally insecure) processes that currently ensure data security, an FHE-enabled world will not only

guarantee privacy but will also work a lot faster in general.

Speeding up FHE via optical computing

With optical computing, we can start to address the computational overhead too; now the FHE world will move even faster, breaking

down the limits imposed by current encryption methods. However, to reach that point, we’re still going to need the software tools and

the broader algorithmic understanding to make this a reality.

So, in the interests of illustrating the value that can already be unlocked, this article is dedicated to the task of implementing an

encrypted search operation using Zama’s Concrete Boolean library, and running it with the assistance of optical Fourier transform

hardware.

Visualisation of the core of our optical Fourier transform system, a chip-scale hybrid

CMOS/Photonic processor for ultra-fast Fourier transforms. In this article, we use our system-level

simulators (developed for our Beta program) to execute the Fourier transforms required for FHE

operations in Concrete-Boolean, allowing us to provide a projected benchmark for the benefits of

this technology in performing an encrypted search.

Concrete Boolean is the library we applied in our last article, where we used it to execute Conway’s Game of Life in encrypted space.

This library provides us with the programming tools that we need to start working with the computational properties of FHE in a

direct and secure way.

Indeed, the speed with which we’ve been able to start using it is testament to the power that it places in the hands of users. Concrete

Boolean was released about a month ago; in that time, we’ve been able to put out two articles on non-trivial applications. It’s an

extremely encouraging development for the field in general.

Some FHE applications (such as Conway’s Game of Life) are interesting. This is an application which is useful. By using our optical

Fourier transform approach, we can then take that useful application and make it run muchfaster than it would on conventional

electronics.

How much faster? We put the string searching model we built to the test on our simulator architecture, which replicates the

functionality of our physical demonstrator systems. Under the parameters of the commercial-grade system we have designed, this

example search algorithm can be made to run 60x faster when the Fourier transforms are executed by an optical process.

String Searching

Search algorithms are common tools for information retrieval and assessment. For example, consider the way that email is currently

filtered. This usually involves a range of different techniques, but one of the simplest, and earliest methods (the “naive Bayes”

classifier) involved detecting key words or phrases. For example, emails containing the following in the subject line or message body:

“Free money”

“Free offer”

“$$$”

“Weight loss”

Are highly unlikely to be legitimate, and may be actively harmful. These phrases are made of sequences of characters (like any other

text), which in computing are represented as strings, sequences of bits that represent characters. For example, the “$$$” string in

ASCII encoding is a sequence of bytes (8 bit sequences), each of which represents a “$” character:

00100100 00100100 00100100

A straightforward key-word based approach to filtering means that detecting this sequence in an email indicates it is likely to be

spam.

This kind of identification is an example of string searching. String searching is an extremely common task in computing; if you’ve

ever searched a document for a particular word or typed a message on a phone that auto-predicts what the next word will be, you’ve

seen it in action. We’ll use strings as an example in this article, but the approach we take to encrypted searching can be broadly

generalised.

Techniques for string searching

As we did with the Game of Life application in our previous article, we’ll start by exploring approaches for unencrypted information.

The fundamental problem of string searching can be described compactly as:

“Given string S1 of length n and search string S2 of length m where m ≤ n, find all instances of S2 in S1”.

For example, finding the word “fox” in a longer string:

The naive approach

The simplest way to approach this problem is to iteratively compare sections or “windows” of length m of S1 against S2. Starting from

the beginning of S1…

…we check to see if these characters match and then move on to the next sub-string. Spaces count as characters, so we end up

having to check these too.

Eventually, we’ll reach the correct pairing. If we’re checking a long document for multiple instances of a word, we’ll have to continue

on like this to the end, making a note of the indices where matches were found.

This is the naive approach; the first thing that would come to mind. However, consider a different S1 and S2:

Now the string that we’re searching for is right at the end of S1, which means that the total number of checks that we have to

perform in the worst-case leads to a runtime complexity of O(nm).

What if there were other ways of representing string information in a searchable form?

Tries

If we’re allowed to consider a dictionary of words, we can also use a structured approach. Consider the previous string:

This was the worst-case scenario for the naive example. If we’re allowed to operate on the assumption that these words are stored in

a dictionary, there’s a faster way of storing and representing information in the form of a Trie data structure. When we load the

string, we can split it on the basis of the “ “ (space) delimiter into a dictionary:

We can then build up a tree structure by taking each word and adding each character to sequential nodes. Each node can itself

contains a list of other characters, like so:

The cost of building this structure in runtime complexity is linear, i.e. O(n). This is because, in the worst case, we will have to add one

node to the trie per character in the dictionary of words.

By searching over this structure, we can notionally reduce the search time significantly. For example, if we want to search to see if the

word “fox” is present, we now only have to perform at worst 3 operations as we search through the nodes. We first query the root

node to see if it contains the “f” character, if it does not, then we know “fox” cannot exist in the set of words. If we do find an “f”,

then we perform similar checks recursively on the node containing “f”, until we find the terminal character.

The cost of checking a node for a character is O(1) if we use an efficient structure to store subnodes e.g. a hashmap. This means that

the runtime complexity of searching for a given word in the trie is O(m) where m is the length of the word we are searching for.

Tries are also more compact than a straightforward dictionary, as many prefixes are duplicated (e.g the sequence “Fo”, which starts

many words such as “for” “fortune”, “Fourier” and so on, only needs to appear once). Overall, this approach works very well; tries (or

similar approaches) are foundational data structures for tasks like auto-complete and spell-checking.

However, the catch is that implementing such a structure also involves a lot of decisional branching, and that’s an issue for FHE. Over

the course of an encrypted computation, there’s no easy way to perform the kinds of comparison that are needed to execute a jump

to another section of the computation. So to begin with, we’re going to settle for the naive approach.

That’s not to say that the idea of using a better-than-naive approach to searching is impossible with FHE; we can certainly improve

upon things, so after we’re done with the naive method, we’ll also outline an alternative approach that falls somewhere between the

naive approach and the more advanced trie method.

The naive approach: bringing Booleans into the picture

Thus far, we’ve described string searching in terms of characters, but paid little attention to the way that computers actually work. As

we mentioned before, computer’s don’t see characters; each character is represented by a sequence of bits.

Bits can be 1 or 0, so we can implement a string check via Boolean operations. This is in fact what’s going on behind the scenes

whenever we perform a string check; it’s just that there’s usually one or more layers of abstraction between the code we write and

what’s actually going on.

If we have a word such as “fox” and we’re checking through strings where the characters are encoded with ASCII, then each character

is represented by an 8-bit value. There are two Boolean operations which are useful here.

The first is the “exclusive not-OR” or XNOR gate. Here’s the inputs and outputs (the “truth-table”) for such a gate.

And the second is the AND gate

We can combine the utility of these gates like so; Let’s say we have two sequences of bits, e.g

S1 = “011000011101110110000101”

S2 = “01110110”

And we want to find S2 in S1 via the naive sliding-window approach. For each comparison window, we can XNOR each bit together and

then apply a cascade of AND gates to the output. If the bit sequences don’t match…

… then the output of the final AND bit will always be zero

The only time this process will return a non-zero output bit is if all the bits match:

This allows us to reduce a query over multiple binary values to a single binary outcome.

Applications

This by itself is a pretty big deal! It’s not a new idea, but it is a key piece of understanding before we leap into encrypted string

searching, so we’ll stop for a moment and consider what we can do with it.

Thus far we’ve phrased everything in terms of searching a single string of text to see if it contains another string. That’s fine; it’s

been a useful tool for introducing us to the link between Boolean operations and the way that information is represented on

computers.

However, beyond this, if we can convert the problem of searching human-readable text strings into a Boolean model, we can

implement this approach to searching over other data types too. This is what we need to begin developing the more complex

applications of encrypted search.

In fact, some of these data types are actively easier to work with than text. For ASCII text representations we’re working with a byte

per character, which means comparing 8 binary values. That’s not a big deal on a modern machine, but when working with encrypted

FHE operations, every additional Boolean gate we need to apply translates into meaningful extra work.

Text requires an 8-bit representation because written human language contains many different symbols. English contains 26 lower

case characters, 26 upper case characters, punctuation, and various other symbols that are used often ($!& etc). If we’re representing

the complete English character set with unique binary values, then of course we need quite a few of them.

However, language doesn’t always mean human communication; language in the broader sense can be seen as any formal system of

symbols.

For example, DNA is formed from 4 nucleotide base pairs: adenine, cytosine, guanine and thyamine. This is an example of a symbolic

language that only requires 2 bits to represent the full range of characters. In light of the methods we use in our example, an

encrypted search over a DNA sequence would be much faster on a per-character basis than over a text string.

We’ll likely come back to this idea in a later article, but for now we’ll move on to how we translate this into an encrypted search.

Encrypted string search with Concrete-Boolean

To perform an encrypted string search, we can combine Concrete-Boolean with the Boolean comparison process. In our example, we’ll

be searching the S1 string

For the S2 string

We begin by encrypting each individual bit of each character in both S1 and S2 as a ciphertext. Each discrete character (e.g “l”) can

now be thought of as being represented by a vector of 8 ciphertexts.

To compare two characters, we first have to perform an encrypted XNOR operation between each ciphertext just as we did before.

If we do this for each character in S2, we now have a collection of ciphertexts containing the output of all the XNOR operations

between the section of S1 and S2. We can then apply encrypted AND operations to these ciphertexts. This will return a single

ciphertext containing an encryption of either “0” if the strings don’t match or “1” if they do.

This is just like our initial Boolean search method, but now everything is encrypted. The only information that can be extracted is

whether the S2 string is present in S1 and, if so, where it is in S1. At the same time, the only person or organisation that can retrieve

this information is the holder of the decryption key.

Let's see how this works in practice.

Import the Concrete-Boolean library

We first import the elements we will use from the Concrete-Boolean library: the gen_keys function used to generate the keys, and

the ServerKey, Ciphertext, and ClientKey types. We also import Concrete’s CryptoAPIError type and define the number of bits

per character.

view raw

1

2

3

4

5

6

7

8

imports.rs hosted with ❤ by GitHub

pub use concrete_boolean::{ gen_keys,

 server_key::ServerKey,

 ciphertext::Ciphertext,

 client_key::ClientKey };

pub use concrete::CryptoAPIError;

pub const N_BITS_PER_CHAR: usize = 8;

Encrypt a string

The next thing we need is a function to encrypt a string into a vector of ciphertexts. The simplest approach is to convert the string to

bytes, loop over the bits, and encrypt each of them. Since Concrete-Boolean works with Boolean values rather than integers, we

identify 0 with False and 1 with True.

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

encrypt_str.rs hosted with ❤ by GitHub

/// encrypt the string `plaintext` into a vector of ciphertexts

pub fn str_to_encrypted_seq(client_key: &ClientKey, plaintext: &str)

 -> Vec<Ciphertext>

{

 // convert the string to a sequence of bytes

 let plaintext_bytes = plaintext.as_bytes();

 // create a vector of ciphertexts

 let mut result = Vec::<Ciphertext>::new();

 // loop over the bytes of the plaintext

 for x in plaintext_bytes {

 // loop over the bits of the current byte

 for i in 0..N_BITS_PER_CHAR {

 // if the bit is 1, push an encryption of true to the results

 // otherwise, push an encryption of false

 if *x & (1 << i) == 1 {

 result.push(client_key.encrypt(true))

 } else {

 result.push(client_key.encrypt(false))

 }

 }

 }

 result

}

The FHEError type

This step is not strictly needed, but will make error handling easier. The string function we will write may fail for different reasons.

Some of them are due to how Concrete-Boolean works, and will result in a CryptoAPIError. But others may not be related to the

cryptography algorithm at all. For instance, one of the strings may be empty, and we choose to throw an error in this case. To deal

with these different possibilities, we define a custom error type, FHEError. We also implement the From<CryptoAPIError> trait so

that a CryptoAPIError can be converted to an FHEError.

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

fhe_error.rs hosted with ❤ by GitHub

/// a custom error for FHE operations

#[derive(Debug, Clone)]

pub struct FHEError {

 message: String

}

impl FHEError {

 /// creates a new [`FHEError`]

 pub fn new(message: String) -> FHEError {

 FHEError { message }

 }

}

// implement the `Display` trait to be able to print the error

impl std::fmt::Display for FHEError {

 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {

 write!(f, "FHEError: {}", self.message)

 }

}

// implement the `Error` trait

impl std::error::Error for FHEError {}

// convert Concrete's [`CryptoAPIError`] to an `FHEError`

impl std::convert::From<CryptoAPIError> for FHEError {

 fn from (err: CryptoAPIError) -> Self {

 FHEError::new(format!("CryptoAPIError: {:}", err))

 }

}

Checking the equality of two characters

We now define the function which checks if two sequences of ciphers decrypt to the same sequence of bits. The

function bits_are_equal below takes a server key and two ciphertexts a and b as arguments, and returns another ciphertext which

decrypts to trueif a and b encrypt the same boolean value or false otherwise.

The function are_equal does the same for two sequences of ciphertexts, returning an error if they are empty or have different

lengths.

1

2

3

4

5

6

7

8

9

10

11

12

/// Return a ciphertext that decrypts to `true` if `a` and `b` encrypt the same bit and `false`

/// otherwise.

pub fn bits_are_equal(server_key: &ServerKey, a: &Ciphertext, b: &Ciphertext)

 -> Ciphertext

{

 server_key.xnor(&a, &b)

}

/// If `a` is not empty and `a` and `b` have the same length, return `Ok(c)` where `c` is ciphertext

/// that decrypts to `true` if `a` and `b` encrypt the same sequence of bits and `false`otherwise.

/// Return an `FHEError` if `a` is empty or if `a` and `b` have different lengths.

HOME TECHNOLOGY DOCUMENTS PROJECTS NEWSROOM BETA PROGRAM COMPANY CONTACT

https://techjury.net/blog/how-much-data-is-created-every-day/
https://docs.zama.ai/concrete/boolean-lib/how_does_it_work.html
https://medium.com/optalysys/fully-homomorphic-encryption-and-the-game-of-life-d7c37d74bbaf
https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
https://en.wikipedia.org/wiki/Trie#:~:text=In%20computer%20science%2C%20a%20trie,key%2C%20but%20by%20individual%20characters.
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/imports.rs
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/encrypt_str.rs
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/fhe_error.rs
https://optalysys.com/
https://optalysys.com/
https://optalysys.com/technology
https://optalysys.com/documents
https://optalysys.com/projects-gallery
https://optalysys.com/newsroom
https://optalysys.com/fhe-beta-program
https://optalysys.com/about
https://optalysys.com/contact-us

READ THE WHITE PAPER DOCUMENTS PRIVACY POLICY CONTACT US

view raw

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

test_equality.rs hosted with ❤ by GitHub

pub fn are_equal(server_key: &ServerKey, a: &[Ciphertext], b: &[Ciphertext])

 -> Result<Ciphertext, FHEError>

{

 // check that a is not empty

 if a.len() == 0 {

 return Err(FHEError::new(

 "Error checking the equality between two elements: the first element is empty"

 .to_string(),

));

 }

 // check that the two inputs have the same size

 if a.len() != b.len() {

 return Err(FHEError::new(format!(

 "Error checking the equality between two elements: the elements of different lengths ({} and {})",

 a.len(), b.len()

)));

 }

 // check the equality of the first elements

 let mut are_equal = bits_are_equal(server_key, &a[0], &b[0]);

 // check the equality of the other elements

 for i in 1..a.len() {

 are_equal = server_key.and(&are_equal, &bits_are_equal(server_key, &a[i], &b[i]));

 }

 Ok(are_equal)

}

The string search function

Finally, the function search_word takes a server key and two sequences of ciphertexts a and b as arguments. If a is empty, it

returns an error. Otherwise, it returns an encryption of true if the string used to generate a is in that used to generate b or

of false otherwise.

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

string_search.rs hosted with ❤ by GitHub

/// If `a` is not empty and `b` is no smaller than `a`, return `Ok(c)` where `c` is a cipher that

/// decrypts to `true` if the plaintext of `a` is in the plaintext of `b` and to `false` otherwise.

/// Return an `FHEError` if `a` is empty or if `b` is smaller than `a`.

pub fn search_word(server_key: &ServerKey, a: &[Ciphertext], b: &[Ciphertext])

 -> Result<Ciphertext, FHEError>

{

 // check that a is not empty

 if a.len() == 0 {

 return Err(FHEError::new(

 "Error checking the equality between two elements: the first element is empty"

 .to_string(),

));

 }

 // if b is smaller than a, return an encryption of false

 if b.len() < a.len() {

 return Ok(server_key.and(&a[0], &server_key.not(&a[0])));

 }

 // check if the start of b is a

 let mut is_found = are_equal(server_key, a, &b[..a.len()])?;

 // check the next positions

 for i in 1..=(b.len()-a.len())/N_BITS_PER_CHAR {

 is_found = server_key.or(&is_found,

 &are_equal(server_key, a, &b[i*N_BITS_PER_CHAR..a.len()+i*N_BITS_PER_CHAR])?);

 }

 Ok(is_found)

}

An example

As an example, the code shown below will look for the words “like” and “hate” in the sentence “I like making FHE easy!”.

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

main.rs hosted with ❤ by GitHub

fn main() {

 // define the client and server keys

 let (client_key, server_key) = gen_keys();

 // words to be searched for

 let word_1 = "like";

 let word_2 = "hate";

 // text to search the words in

 let text = "I like making FHE easy!";

 // encrypt the words and text

 let word_1_enc = str_to_encrypted_seq(&client_key, &word_1);

 let word_2_enc = str_to_encrypted_seq(&client_key, &word_2);

 let text_enc = str_to_encrypted_seq(&client_key, &text);

 // search for the words in the text

 let word_1_found_enc = search_word(&server_key, &word_1_enc, &text_enc).unwrap();

 let word_2_found_enc = search_word(&server_key, &word_2_enc, &text_enc).unwrap();

 // decrypt the results

 let words_found = [client_key.decrypt(&word_1_found_enc),

 client_key.decrypt(&word_2_found_enc)];

 // print the result

 for (i,word) in [word_1, word_2].iter().enumerate() {

 if words_found[i] {

 println!("‘{}’ found!", word);

 } else {

 println!("‘{}’ not found", word);

 }

 }

 println!("");

}

Here is the result:

view raw

1

2

output.txt hosted with ❤ by GitHub

‘like’ found!

‘hate’ not found

Alternative version

As we mentioned earlier, this algorithm is not the most optimal when working with plaintext data: it is much better to first split the

list into words, assemble them into a trie structure, and use it to search each word. There are two reasons why this is not possible in

(or, at least not easily transferable to) FHE:

• First, using FHE, we can’t use conditionals based on the plaintext data to terminate the calculation early. This is a fundamental

property of all well-designed FHE schemes, as the time needed to perform a calculation would otherwise leak information about

the plaintext data.

• Second, if we want to leak no information at all about the string, we can’t even provide the function with the length of each

word, as a statistical analysis on these lengths could reveal something about the text. (For instance, some technical fields are

more prone to long words than others.)

However, sometimes faster computation may be worth leaking some information about the original string. If the string is short

enough, there is only so much that a statistical analysis will reveal. And, for longer strings, one could imagine padding them with

random words to partially hide the information that word lengths reveal.

In cases where this trade-off is acceptable, one can split the string into individual words, encrypt them, and check a word to be

searched against each of them sequentially. For additional security, one may pad or crop each word to a fixed length, so that the only

information the server gets is the total number of words. This has the added benefit over the above version that the server does not

even know the length of each word to be searched for. The complexity of the search algorithm then becomes O(m l), where m is the

number of words in the string and l is the fixed length.

For completeness, we give here the full lib.rs file (a large part of which has already been explained above):

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

lib.rs hosted with ❤ by GitHub

pub use concrete_boolean::{ gen_keys,

 server_key::ServerKey,

 ciphertext::Ciphertext,

 client_key::ClientKey };

pub use concrete::CryptoAPIError;

/// Return a ciphertext that decrypts to `true` if `a` and `b` encrypt the same bit and `false`

/// otherwise.

pub fn bits_are_equal(server_key: &ServerKey, a: &Ciphertext, b: &Ciphertext)

 -> Ciphertext

{

 server_key.xnor(&a, &b)

}

/// If `a` is not empty and `a` and `b` have the same length, return `Ok(c)` where `c` is ciphertext

/// that decrypts to `true` if `a` and `b` encrypt the same sequence of bits and `false`otherwise.

/// Return an `FHEError` if `a` is empty or if `a` and `b` have different lengths.

pub fn are_equal(server_key: &ServerKey, a: &[Ciphertext], b: &[Ciphertext])

 -> Result<Ciphertext, FHEError>

{

 // check that a is not empty

 if a.len() == 0 {

 return Err(FHEError::new(

 "Error checking the equality between two elements: the first element is empty"

 .to_string(),

));

 }

 // check that the two inputs have the same size

 if a.len() != b.len() {

 return Err(FHEError::new(format!(

 "Error checking the equality between two elements: the elements of different lengths ({} and {})",

 a.len(), b.len()

)));

 }

 // check the equality of the first elements

 let mut are_equal = bits_are_equal(server_key, &a[0], &b[0]);

 // check the equality of the other elements

 for i in 1..a.len() {

 are_equal = server_key.and(&are_equal, &bits_are_equal(server_key, &a[i], &b[i]));

 }

 Ok(are_equal)

}

/// encrypt an str

pub fn str_to_encrypted_seq(client_key: &ClientKey, plaintext: &str)

 -> Vec<Ciphertext>

{

 let plaintext_bytes = plaintext.as_bytes();

 let mut result = Vec::<Ciphertext>::new();

 for x in plaintext_bytes {

 for i in 0..8 {

 if *x & (1 << i) == 1 {

 result.push(client_key.encrypt(true))

 } else {

 result.push(client_key.encrypt(false))

 }

 }

 }

 result

}

/// search an encrypted word in a set of encrypted words

pub fn search(server_key: &ServerKey, word: &[Ciphertext], list: &[Vec<Ciphertext>])

 -> Result<Ciphertext, FHEError>

{

 // get an encryption of `false`

 let mut result_encrypted = server_key.not(&bits_are_equal(server_key, &word[0], &word[0]));

 // loop over the words in the list

 for word_from_list in list {

 // If the word has the right length, check it against `word`.

 // Otherwise, do nothing.

 if word_from_list.len() == word.len() {

 result_encrypted = server_key.or(&result_encrypted,

 &are_equal(server_key, &word, &word_from_list)?);

 }

 }

 Ok(result_encrypted)

}

/// split a string on spaces and pad the words with ` `

pub fn split_and_pad_str(text: &str, length: usize)

 -> Vec<String>

{

 text.split(' ').map(|x| { format!("{:*<1$}", x, length) }).collect()

}

/// pad `word` with ` ` up to length `length`

pub fn pad_word(word: &str, length: usize)

 -> String

{

 format!("{:*<1$}", word, length)

}

/// A custom error for FHE operations

#[derive(Debug, Clone)]

pub struct FHEError {

 message: String

}

impl FHEError {

 pub fn new(message: String) -> FHEError {

 FHEError { message }

 }

}

impl std::fmt::Display for FHEError {

 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {

 write!(f, "FHEError: {}", self.message)

 }

}

impl std::error::Error for FHEError {}

impl std::convert::From<CryptoAPIError> for FHEError {

 fn from (err: CryptoAPIError) -> Self {

 FHEError::new(format!("CryptoAPIError: {:}", err))

 }

}

And the associated main.rs file:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

main_v2.rs hosted with ❤ by GitHub

use test_concrete::*;

fn main() {

 // maximum length of a word

 let max_length = 6;

 // words to be searched for

 let words = ["like", "hate"];

 // text to search the words in

 let text = "I like making FHE easy";

 // split text into words and pad them

 let list_words = split_and_pad_str(text, max_length);

 // define the client and server keys

 let (client_key, server_key) = gen_keys();

 // encrypt the words and list

 let words_enc = words.iter().map(|x| str_to_encrypted_seq(&client_key,

 &pad_word(x, max_length)))

 .collect::<Vec<Vec<Ciphertext>>>();

 let list_enc: Vec<Vec<Ciphertext>> =

 list_words.iter().map(|word| str_to_encrypted_seq(&client_key, &word)).collect();

 // search for the words in the list

 let words_found_enc = words_enc.iter()

 .map(|x| search(&server_key, x, &list_enc).unwrap())

 .collect::<Vec<Ciphertext>>();

 // decrypt the results

 let words_found = words_found_enc.iter()

 .map(|x| client_key.decrypt(x))

 .collect::<Vec<bool>>();

 // print the result

 for (i,word) in words.iter().enumerate() {

 if words_found[i] {

 println!("‘{}’ found!", word);

 } else {

 println!("‘{}’ not found", word);

 }

 }

 println!("");

}

This version has a slightly different trade-off than the previous one. Indeed,

• In the previous version, the function performing the computation had access only to the total length of the text and to the

length of each word which is searched.

• In this version, it has access to the total number of words in the text but not their individual length nor the length of the words

which are searched for.

In both cases, the small information leak can be resolved (at the expense of a longer runtime) by padding the text with additional

words and, in the first version, by padding each word with spaces to be searched for and adding a comparison to an encryption of a

space to the function comparing characters.

As far as the runtime is concerned,

• The first version requires about nm character-to-character comparisons, where m is the length of the text and n that of the

word to be searched for.

• The second version requires wl character-to-character comparisons, where w is the number of words in the text and l the

maximum length of a word.

The second version will thus be faster on average if l is smaller than the squared average length of a word, and slower if it is larger.

Potential for optical acceleration

The above example runs in about 40s on an Intel i7 CPU @ 3.6 GHz. By comparison, we project (again, based on the parameters of our

optical device design) that the Fourier transforms required for the full computation, which are by far the main bottleneck, would take

less than 0.4s on the Optalysys optical Fourier transform system. The chip-scale technology we are developing could thus accelerate

this more advanced application by a factor of 100.

Telephone: +44 (0) 1977 551615 Email: info@optalysys.com

https://optalysys.com/s/Multiply_and_Fourier_Transform_white_paper_12_12_20.pdf
https://optalysys.com/documents
https://optalysys.com/privacy-policy
https://optalysys.com/contact-us
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/test_equality.rs
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/string_search.rs
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/main.rs
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/output.txt
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/lib.rs
https://gist.github.com/FlorentCLMichel/9fbaf668b030e263d3d9614e585bb9ed/raw/cf24c551f1b36220290a8b224b4548ea4725c14f/main_v2.rs
mailto:info@optalysys.com

