
Logistic Regression on Encrypted Data

[11 minute read]

This article will discuss how Zama’s Concrete library can be leveraged to perform logistic regression on data encrypted via Fully

Homomorphic Encryption (FHE).

Article Contents

The following topics will be covered:

• Introduction to Fully Homomorphic Encryption (FHE)

• Introduction to logistic regression

• Implementation of logistic regression in Python

• Simplifying the model via dimensionality reduction

• Implementation of logistic regression in Concrete / Rust

• Results of applying the model on encrypted data

Introduction

There are many reasons to be excited by FHE. The ability to perform computations on encrypted data is a game changer for many

fields. Using FHE, users can have encrypted data processed by third parties. Processing is carried out entirely on encrypted data,

yielding encrypted results.

Thus, a user can have their data processed by, say, a proprietary AI model owned by a medical company, without needing to share their

data or compromise their privacy. In the event that the medial company experienced a data breach, no user information would be

retrievable. It would all be encrypted.

Although this technology already exists, FHE requires a lot of compute power and can be prohibitively slow, limiting real work use

cases. However, at Optalysys, we are currently building optical compute hardware that can accelerate real-world FHE workloads by

over two orders of magnitude. We thus see our optical technology as the key to unlocking the huge potential of FHE.

We’ve already covered how we can merge Zama’s Concrete and Concrete-Boolean libraries with our technology, and used this

combined system to carry out a range of tasks in encrypted space. We’ve also been transitioning from applications which

are interesting (performing Conway’s Game of Life in encrypted space) through to applications which are useful.

Practical FHE

It’s well established that FHE is going to be revolutionary for the way that data can be handled, managed and analysed, which in turn

is going to open up a vast new market in providing encrypted data services. However, to fully realise the commercial value, FHE has to

be accessible to a far broader developer base than it currently is.

So to tie FHE together with familiar software development tasks, in this article we’ll be taking things to another level. We’ll

demonstrate how we can securely implement a powerful data analysis tool and apply it to the test case of evaluating encrypted

medical data. We’ll be leveraging the power of Zama’s Concrete library. This library has made it easier than ever to start applying

powerful FHE techniques.

We consider the situation where a medical company has created a logistic regression AI model to predict the whether a patient has a

disease based on their medical record. The patient would like to know if they have a disease, but do not want to expose their data to

any security risks incurred by transmitting their data. We will therefore use FHE to allow the model to work with encrypted data.

The two diagrams below explain why FHE is necessary for such a system to be secure:

Standard workflow for third party cloud processing of a patient’s medical record. There is a security

risk at the interface between the patient and the cloud service.

FHE workflow, before data is sent it is encrypted and thus secure over the network. The prediction

of the model is also encrypted, it can only be decrypted at the patient’s end using their secret key.

Leveraging FHE will allow this to take place; the user will receive a prediction of whether they have a disease, without their medical

record being exposed to the third party, or any adversaries on the way.

Before discussing the FHE implementation, we will first introduce logistic regression and build a basic model.

What is logistic regression?

Logistic regression is a supervised learning technique to classify data. A logistic regression model is trained by optimising coefficients

that are applied to a feature vector as a linear combination. Probabilistic predictions can be obtained by passing the output of the

linear combination through a logistic function.

More formally, a scalar prediction y in the range (0, 1) is obtained by applying a logistic function (e.g. sigmoid) to a scalar value v,

which is the output of dot product between a feature vector X and a learned weight vector W.

The prediction y can be interpreted as the probability of the input vector corresponding to one of two classes. A bias or intercept term

can be added explicitly, or encoded via an additional weight and concatenating a 1 onto the feature vector.

Logistic regression is essentially linear regression, but instead of predicting a continuous output variable, it predicts a binary

classification probability by applying a logistic function to the output.

Thus if we threshold the model output at 0.5, we can use it directly as a binary classifier. In this article, we are not interested in the

output probability, only the class. As such we can omit the sigmoid function, instead thresholding the output of the linear model at 0.

Logistic Regression in Python

We can create and optimise a logistic regression model in Python using the NumPy and Scikit-learn packages. We will use these

packages for the dataset, pre-processing, model generation, optimisation and evaluation.

Training the model

The following code snippet demonstrates how we can create a logistic regression model on Scikit-learn’s breast cancer dataset:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

logistic_regression.py hosted with ❤ by GitHub

from sklearn.datasets import load_breast_cancer

from sklearn.linear_model import LinearRegression, LogisticRegression

from sklearn.preprocessing import normalize

import numpy as np

load the breast cancer dataset

d = load_breast_cancer()

normalise the features such that they lie in the range [0, 1]

x, y = normalize(d['data']), d['target']

train the model

regressor = LogisticRegression().fit(x, y)

predict with the model on the dataset

model_predictions = regressor.predict(x)

check the accuracy of the model

print(regressor.score(x, y))

When we run this code, we find out that the accuracy of the model is 81%.

Visualising the model’s predictions

By plotting the data, we can visualise the decision boundary of the model. As we have a 9-dimensional feature vector, its hard to

visualise, so we will plot the data in 2 dimensions, taking only the two features with the largest absolute coefficients in our model and

plotting these on the x and y axes.

Points on the plot represent individual data samples, with their associated class label represented using colour. Below is a plot showing

the output of our model’s predictions vs. the ground truth for our dataset. Positive predictions are shown in orange, negative blue.

Graphs depicting data classification, x and y axes are discriminative feature dimensions in our

model, and the orange and blue points represent the two classes. The left plot shows the ground

truth labels of the data, and the right plot shows the model’s predictions.

From the plots, we can see that many samples are being classified correctly. There seems to be a linear decision boundary that cuts

the data fairly well, though some are being classified incorrectly.

Understanding the model and data dimensionality

The following code will tell us more about the dataset and the model’s parameters:

view raw

1

2

3

4

5

6

7

logistic_regression.py hosted with ❤ by GitHub

np.set_printoptions(precision=2, suppress=True)

check the dimensionality of the data

print(x.shape)

check the model weights and bias terms

print(regressor.coef_, regressor.intercept_)

Running this, we find out that the shape of the dataset, model weights and bias (the .coef_ and .intercept_ parameter respectively)

are (to two d.p.):

Dataset shape: (569,30)

Weights: [[0.61 1.16 3.69 4.87 0.01 0. -0. -0. 0.01 0.01 0.01 0.1

0.04 -0.8 0. 0. 0. 0. 0. 0. 0.58 1.45 3.48 -4.55

0.01 -0. -0.01 -0. 0.02 0.01]]

Bias: [0.34]

Many of these values are very low, indicating that the associated features are contribute very little to the prediction. It is therefore

likely that we can simplify this model, which we will do in the next section of the article.

For now, we will save the model weights and dataset to a csv file for use later in Concrete via Rust:

view raw

1

2

3

4

5

6

7

8

9

10

11

logistic_regression.py hosted with ❤ by GitHub

saves a model and a dataset to file

bias is interpreted as an additional feature with value 1

for each dataset item, and a model weight == bias

def save_weights_and_data(weights, bias, data):

 bias = bias.reshape((1,1))

 weights = np.concatenate((bias, weights), axis=1).flatten()

 data = np.concatenate((np.ones((data.shape[0], 1)), data), axis=1).transpose().flatten()

 np.savetxt("data.csv", data, fmt="%1.6f")

 np.savetxt("weights.csv", weights, fmt="%1.6f")

 save_weights_and_data(weights, bias, data)

This function will save each element to a new line. We store a vector of weights that comprise the model, and a flattened 2D array for

the dataset.

Simplifying the model

Simplifying the model is an important step because we can remove redundant computation, hopefully without affecting the quality of

the prediction.

There are many sophisticated approaches to feature selection, however we will opt for a simple one for brevity’s sake. Let’s try to

simplify the model by choosing an arbitrary threshold for feature weights, discarding those weights that are below the threshold

based on the assumption that low weights do not contribute much to the model’s predictions.

view raw

1

2

3

4

5

6

logistic_regression.py hosted with ❤ by GitHub

reduce dimensionality of weights and data, based on weighting threshold

def get_reduced_coef_and_data(model, x, threshold):

 features = np.where(np.abs(regressor.coef_[0]) >= threshold)[0]

 return model.coef_[:, features], x[:, features]

weights, data = get_reduced_coef_and_data(regressor, x, threshold=0.5)

Setting the threshold to 0.5 reduces the dimensionality of the weights and items in the dataset from 30 to 9, reducing the model size

and required computation by a factor >3. Lets now test the model to see it still predicts effectively.

First we will define a function to predict directly from the weight, bias and data NumPy arrays:

view raw

1

2

3

4

5

6

7

8

logistic_regression.py hosted with ❤ by GitHub

convert a real value to class prediction using sign

def to_binary_prediction(x):

 return (x > 0).astype(int)

generate predictions from np arrays

def predict_from_matrices(data, weights, bias):

 pred = np.matmul(data, weights.transpose()) + bias

 return to_binary_prediction(pred[:,0])

We will now define a function to compare the similarity of model outputs:

view raw

1

2

logistic_regression.py hosted with ❤ by GitHub

def binary_prediction_similarity(pa, pb):

 return 1 - np.mean(np.abs(pa - pb))

This function will return a value in the range 0 and 1 denoting the similarity of the two binary prediction arrays. For two arrays that

are the same we will get a value of 1, and for two arrays that are completely different, we would get a value of 0.

We can now test the similarity of the full model that uses 30 features, vs. the streamlined model with only 9:

view raw

1

2

3

4

5

6

7

logistic_regression.py hosted with ❤ by GitHub

full_model_predictions = regressor.predict(x)

bias = regressor.intercept_

weights, data = get_reduced_coef_and_data(regressor, x, threshold=0.5)

reduced_model_prediction = predict_from_matrices(data, weights, bias)

print(binary_prediction_similarity(full_model_predictions, reduced_model_prediction))

The output of the code is 1.0. In short, the model with 9 features is predicting exactly the same as the model with 30, so we have

significantly reduced the complexity of the model without compromising any performance.

We can now re-run the code that saves the new weights and dataset with fewer features, such that our .csv files contain the

simplified model and data.

Implementing the model in Concrete

We will use the Concrete library to perform homomorphic inference using the trained model on encrypted data. The Concrete library

significantly simplifies implementing this kind of thing. In the next sections we will focus primarily on practical use of the library,

leaving out some low-level implementation details for brevity.

Loading Data

First we will load our data and model weights into vectors in Rust:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

linear_regression.rs hosted with ❤ by GitHub

// imports for file reading

use std::fs::File;

use std::io::{BufRead, BufReader, Error, ErrorKind, Read};

// helper function to print elements of a vector

fn print_f64_vector(v: &Vec::<f64>){

 for &element in v { print!("{}, ", element); }

 println!("");

}

// function to read the csv files

fn read<R: Read>(io: R) -> Result<Vec<f64>, Error> {

 let br = BufReader::new(io);

 br.lines()

 .map(|line| line.and_then(|v| v.parse().map_err(|e| Error::new(ErrorKind::InvalidData, e))))

 .collect()

}

fn main() -> Result<(), Box<dyn std::error::Error>> {

 // read the data: you will have to change the path!

 let plaintext_data = read(File::open("/home/ed/py/linreg/weights.csv")?)?;

 let cipher_data_input = read(File::open("/home/ed/py/linreg/data.csv")?)?;

 // make sure we have read the values correctly

 print_f64_vector(&plaintext_data);

 print_f64_vector(&cipher_data_input);

 Ok(())

}

Concrete implementation of Logistic Regression

The next step is to implement the FHE-powered logistic regression model in Rust with Concrete. We’ll do this using the following

stages:

 1. Create an encoder using Concrete that will be used to when encrypting and decrypting the patient’s medical data.

 2. Create two secret keys using Concrete, used to encrypt and decypt the data.

 3. Create a bootstrap key using the secret keys. This is what allows the encrypted data to be operated on. The bootstrap key is

shared with the medical company in our example use case. This remains secure because the bootstrap key does not allow data to

be decrypted into plaintext (see our previous article for a more detailed description of what bootstrapping is and why it works).

 4. Create some custom error types, useful if there are problems when we run novel operations.

 5. Create two structs for matrices containing plaintext and encrypted ciphertext data. We will use these to store the model weights

and patient data respectively.

 6. Write a matrix multiply function that can operate on plaintext and encrypted matrices.

 7. Combine the above elements to make the encrypted logistic regression model.

With all the above pieces, we will be able to: encrypt patient data; store it in matrix form; store plaintext model data in matrix form;

and multiply the two matrices homomorphically to obtain encrypted predictions. We will then use the patient’s secret key to decrypt

the model predictions and assess if the homomorphic model works as expected.

1–3. Defining the encoding and the encryption keys

First we need some extra imports from the Concrete library:

view raw

1

2

linear_regression.rs hosted with ❤ by GitHub

concrete imports

pub use concrete::{ Encoder, LWESecretKey, RLWESecretKey, LWEBSK, LWEKSK, LWE, LWE128_1024, RLWE128_1024_1,CryptoAPIError };

Now we can define the input encoder, secret keys and the bootstrap key in the main function:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

linear_regression.rs hosted with ❤ by GitHub

// define an encoder for the input with parameters:

// range of inputs (-2, 2)

// bits of precision = 6

// bits of padding = 7

let encoder_input = Encoder::new(-2., 2., 6, 7)?;

// secret keys with parameters:

// bits of security = 128

// polynomial size = 1024

let sk_rlwe = RLWESecretKey::new(&RLWE128_1024_1);

let sk_in = LWESecretKey::new(&LWE128_1024);

// bootstrap key with parameters:

// log base = 6

// levels = 8

let bsk = LWEBSK::new(&sk_in, &sk_rlwe, 6, 8);

The parameters used above took a bit of fine tuning, for more information on how these parameters work please look at

the Concrete documentation.

4–5. Defining the matrix structs (and custom errors)

As we are creating new operations and operands, we first define some error types that we will use later:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

errors.rs hosted with ❤ by GitHub

/// A custom error for FHE operations

#[derive(Debug, Clone)]

pub struct FHEError { message: String }

impl FHEError {

 pub fn new(message: String) -> FHEError { FHEError { message } }

}

impl std::fmt::Display for FHEError {

 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {

 write!(f, "FHEError: {}", self.message)

 }

}

impl std::error::Error for FHEError {}

impl std::convert::From<CryptoAPIError> for FHEError {

 fn from (err: CryptoAPIError) -> Self {

 FHEError::new(format!("CryptoAPIError: {:}", err))

 }

}

/// a matrix operation error

#[derive(Debug, Clone)]

struct MatOpError { message: String }

impl std::fmt::Display for MatOpError {

 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {

 write!(f, "{}", self.message)

 }

}

impl std::error::Error for MatOpError {}

impl MatOpError {

 fn new(message: String) -> MatOpError { MatOpError { message } }

}

Now we must define the ciphertext matrix struct, then implement a new method which will allow us to create matrices of ciphertexts.

The data containing the elements of the ciphertext matrix is stored in a vector of type LWE:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

cipher_matrix.rs hosted with ❤ by GitHub

/// a matrix of LWE ciphers

pub struct CipherMatrix {

 pub dimensions: (usize, usize),

 pub data: Vec<LWE>

}

impl CipherMatrix {

 pub fn new(data: Vec<LWE>, dimensions: (usize, usize))

 -> Result<CipherMatrix, FHEError>

 {

 // check that the data has the right number of elements

 if data.len() != dimensions.0 * dimensions.1 {

 return Err(FHEError::new(format!(

 "The dimensions are ({}, {}), so the data must have {} elements, but has {}",

 dimensions.0, dimensions.1, dimensions.0 * dimensions.1, data.len()

)))

 }

 Ok(CipherMatrix { dimensions, data })

 }

}

We similarly define a plaintext matrix containing 64-bit floats:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

plaintext_matrix.rs hosted with ❤ by GitHub

/// a matrix of plaintext values

pub struct PlaintextMatrix {

 pub dimensions: (usize, usize),

 pub data: Vec<f64>

}

impl PlaintextMatrix {

 pub fn new(data: Vec<f64>, dimensions: (usize, usize))

 -> Result<PlaintextMatrix, FHEError>

 {

 // check that the data has the right number of elements

 if data.len() != dimensions.0 * dimensions.1 {

 return Err(FHEError::new(format!(

 "The dimensions are ({}, {}), so the data must have {} elements, but has {}",

 dimensions.0, dimensions.1, dimensions.0 * dimensions.1, data.len()

)))

 }

 Ok(PlaintextMatrix { dimensions, data })

 }

}

6. Writing the matrix multiply function

Matrix multiplication is defined in the usual way. We first check the dimensions of the two matrices to make sure they can be

multiplied, then we create a result vector of the right size. We accumulate each output term in this vector, and return a newly created

ciphertext matrix containing the data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

fn safe_mul_constant_with_padding(cipher: &LWE, constant: f64, max_pt_val: f64, bits_to_consume: usize)

 -> Result<LWE, Box<dyn std::error::Error>>

{

 if constant != 0. {

 Ok(

 cipher.mul_constant_with_padding(

 constant, max_pt_val, bits_to_consume

)?

)

 }

 else{

 Ok(

 cipher.add_centered(

 &cipher.opposite()?

)?.mul_constant_with_padding(

 1.0, max_pt_val, bits_to_consume

)?

)

 }

}

pub fn mat_mul_pc(m1: &PlaintextMatrix, m2: &CipherMatrix, bsk: &LWEBSK, max_pt_val: f64, bits_to_consume: usize)

 -> Result<CipherMatrix, Box<dyn std::error::Error>>

{

 check_dims_pc(m1, m2)?;

 let mut ans_vector = Vec::<LWE>::with_capacity(m1.dimensions.0 * m2.dimensions.1);

 for ay in 0..m1.dimensions.0{

 for ax in 0..m2.dimensions.1{

 println!("{}, {}", ay, ax);

 for val in 0..m1.dimensions.1{

 if val == 0{

 ans_vector.push(

 safe_mul_constant_with_padding(

 &m2.data[ax],

 m1.data[ay*m1.dimensions.1],

 max_pt_val,

 bits_to_consume

)?

);

 }

 else{

HOME TECHNOLOGY DOCUMENTS PROJECTS NEWSROOM BETA PROGRAM COMPANY CONTACT

https://zama.ai/
https://zama.ai/concrete/
https://optalysys.com/
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
https://numpy.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://gist.github.com/Ed-Optalysys/05d133da88fea2fb10ecdf34da40274b/raw/f086d5ba4c39a9147cb6bec26cf0489bc2b97d00/logistic_regression.py
https://gist.github.com/Ed-Optalysys/4f7c1b69dadbe2e31605c4fddfb4611a/raw/2df32335af4e59e291c5b81dedc0359ced30aa89/logistic_regression.py
https://gist.github.com/Ed-Optalysys/7f68b4bf5082ef733831c45b9b962f3d/raw/dfc52561c7d528b7f12d8bf6f4264260084a9c97/logistic_regression.py
https://gist.github.com/Ed-Optalysys/8a553de484807a5e0a2dcec248e77183/raw/b2f2e5c3c494495fbb60cb4a592cc948a55c62dc/logistic_regression.py
https://gist.github.com/Ed-Optalysys/cc51639819e76dae377bdf84e7d63ebd/raw/0a0bf9c2fea4201a33ceb60df971fcc15c1b3c3a/logistic_regression.py
https://gist.github.com/Ed-Optalysys/6e5e8c86812572da93d49e7a91704d01/raw/335bf26e11e817eabfd5da2239a237ebf2859708/logistic_regression.py
https://gist.github.com/Ed-Optalysys/baad14116fb1c1828893771bc7cece2c/raw/cc79de6093a6777fb23862ea7f9a878339f46cab/logistic_regression.py
https://gist.github.com/Ed-Optalysys/17478439c6ea5a19d303bb60414cb717/raw/c964196cbcb096289b1a56fdee3dc565f079efcd/linear_regression.rs
https://gist.github.com/Ed-Optalysys/bed1cfe70ca0c7d28b667c23da8a3ab8/raw/a2676711b1f4e3c96d88683a72edb97eaa3d2269/linear_regression.rs
https://gist.github.com/Ed-Optalysys/f6638b85bc49d7b829de8a3a9bb932d0/raw/e3194b4bf294c5187145dc5f2c3a6df2228e102f/linear_regression.rs
https://docs.zama.ai/concrete/lib/index.html
https://gist.github.com/Ed-Optalysys/949864dbe6d62932ac2ea923de242724/raw/12e98742f00446542cc1cb666aa45daee2caa364/errors.rs
https://gist.github.com/Ed-Optalysys/650d5aaf61d81b4ae7e77d72cf24e87a/raw/c5bb8255cb652cfdac160cb9e53a5bda31a817e3/cipher_matrix.rs
https://gist.github.com/Ed-Optalysys/f0a067e4196de67a15a0263575f98201/raw/e619512cf6dc8abd23f4725dd5f52b5eef10ec81/plaintext_matrix.rs
https://optalysys.com/
https://optalysys.com/
https://optalysys.com/technology
https://optalysys.com/documents
https://optalysys.com/projects-gallery
https://optalysys.com/newsroom
https://optalysys.com/fhe-beta-program
https://optalysys.com/about
https://optalysys.com/contact-us

READ THE WHITE PAPER DOCUMENTS PRIVACY POLICY CONTACT US

view raw

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

plaintext_matrix.rs hosted with ❤ by GitHub

 else{

 ans_vector[ax + (m2.dimensions.1 * ay)].add_centered_inplace(

 &m2.data[ax + (val*m2.dimensions.1)].mul_constant_with_padding(

 m1.data[(ay*m1.dimensions.1) + val], max_pt_val, bits_to_consume

)?

)?;

 }

 ans_vector[ax + (m2.dimensions.1 * ay)].bootstrap(bsk)?;

 }

 }

 }

 Ok(

 CipherMatrix::new(ans_vector, (m1.dimensions.0, m2.dimensions.1))?

)

}

This function uses a couple of functions from the Concrete library, namely add_centered_inplace and mul_constant_with_padding. We

wont go into the details of how these work, but at a high level they are simply addition and multiplication

functions. add_centered_inplace adds two ciphertexts together, and mul_constant_with_padding multiplies a ciphertext by a plaintext

constant, returning a new ciphertext.

We define a function called safe_mul_constant_with_padding that removes some issues when using mult_constant_with_padding on a

constant that is zero. The technical details of this are a bit much for the scope of this article, but what the function is doing can be

understood as follows:

Aim: calculate (C*0), where C is a ciphertext

Workflow: return (C+(C*-1)) * 1.0

This function ensures that the output is correct, and that it has the right format and encoding such that later operations are

compatible with the cipher.

7. Putting it all together

We now have all the required elements to run the logistic regression model on some encrypted data. Here’s how we do it:

view raw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

logistic_regression.rs hosted with ❤ by GitHub

fn main() -> Result<(), Box<dyn std::error::Error>> {

 // dimensions of the matrices

 let plaintext_matrix_dimensions: (usize, usize) = (1,10); // model weights

 let cipher_matrix_dimensions: (usize, usize) = (10,569); // dataset

 // read weights and data from files

 let plaintext_data = read(File::open("/home/ed/py/linreg/weights.csv")?)?;

 let cipher_data_input = read(File::open("/home/ed/py/linreg/data.csv")?)?;

 // encoders: min val, max val, bits, bits of padding

 let encoder_input = Encoder::new(-2., 2., 6, 7)?;

 // secret keys: 128 bits of security, polnomial size of 1024

 let sk_rlwe = RLWESecretKey::new(&RLWE128_1024_1);

 let sk_in = LWESecretKey::new(&LWE128_1024);

 //bootstrapping key: log base of 6, 8 levels

 let bsk = LWEBSK::new(&sk_in, &sk_rlwe, 6, 8);

 // encrypt each message

 let cipher_data: Result<Vec<LWE>, _> = cipher_data_input.into_iter().map(|m|

 LWE::encode_encrypt(&sk_in, m, &encoder_input)).collect();

 // build a matrix with the cipher and plaintext

 let plaintext_mat = PlaintextMatrix::new(plaintext_data, plaintext_matrix_dimensions)?;

 let ciphertext_mat = CipherMatrix::new(cipher_data?, cipher_matrix_dimensions)?;

 // multiply the matrices

 let mat_mul_result_cipher = mat_mul_pc(&plaintext_mat, &ciphertext_mat, &bsk, 5., 6)?;

 // decrypt the result

 let mat_mul_result_plaintext = decrypt_vector(&mat_mul_result_cipher.data, &sk_in)?;

 // print the model output

 print_f64_vector(&mat_mul_result_plaintext);

 Ok(())

}

The output of the above code is a list of numbers, the sign of these numbers indicates the class of the prediction, negative sign,

negative prediction and vice versa:

-1.1276431618729381, -0.26699129985757963, …0.6429439321792962

Results

After a bit of post processing of the data in Python to retrieve the class predictions, we can plot the predictions of the model. We will

plot them in the same way as before: taking the two dimensions of the input features with the highest associated coefficients in the

model. We will compare the output predictions of the plaintext model with the model that works on encrypted inputs.

Encrypted model using FHE:

Graphs depicting data classification, x and y axes are feature dimensions in data model, and the

orange and blue points represent the two classes. The left plot shows the ground truth labels of the

data, and the right plot shows the encrypted model’s predictions.

Plaintext model:

Graphs depicting data classification, x and y axes are feature dimensions in data model, and the

orange and blue points represent the two classes. The left plot shows the ground truth labels of the

data, and the right plot shows the plaintext model’s predictions.

The two plots look identical. This is good news as it suggests that the model that uses encrypted data seems to be working as well as

the original plaintext model.

However, to confirm this, we ran the binary_prediction_similarity function described earlier to compare the two models’ predictions.

We found a prediction similarity of 0.995 or 99.5%. This is a result of the models disagreeing on 3 single data points out of 569, which

may be as a result of precision limitations in the chosen parameters for Concrete.

This means that the model converted to run on encrypted inputs works almost identically to its plaintext counterpart. We were happy

with the balance of runtime and accuracy, although it is possible to achieve even greater accuracy.

If, for instance, we used a higher bit precision in our encoder, perhaps with a larger polynomial size, it is likely that we could remove

any discrepancy between the two models, but there would be an associated runtime cost.

Conclusion

We have shown how to create a logistic regression model in Python, how to interpret the results, and how to convert such a model to

work with Zama’s Concrete FHE library. Using FHE, we have shown that we can create a logistic regression model that works entirely

on encrypted data. Using fairly performant parameter choices, able to run inference in a reasonable length of time, we were able to

run the model on encrypted data without sacrificing acccuracy.

Our model is able to predict disease from an encrypted medical record, without the data ever being exposed. Patients can encrypt

their own medical record, send it a to a medical company for processing, and receive an encrypted result.

At Optalysys we know that technology like this is the key to solving many risks and concerns surrounding data processing. We foresee

a future that leverages a combination of FHE algorithms with optical hardware acceleration, removing many user privacy concerns,

and allowing models to be built on data shared without risk.

Telephone: +44 (0) 1977 551615 Email: info@optalysys.com

https://optalysys.com/s/Multiply_and_Fourier_Transform_white_paper_12_12_20.pdf
https://optalysys.com/documents
https://optalysys.com/privacy-policy
https://optalysys.com/contact-us
https://gist.github.com/Ed-Optalysys/6408f5c7de519a262ec3d8cad2b6d29a/raw/1e0ad7f392b89c03d5399fc7a39c0a9985b340cd/plaintext_matrix.rs
https://gist.github.com/Ed-Optalysys/40cee3468a6c327ff33e565cdbcad7b5/raw/1651921df5976d8d65b903c4c13a42d9a01a3069/logistic_regression.rs
mailto:info@optalysys.com

